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Introduction

Protein disulphide isomerase (PDI) has been known 
for a long time as a protein-folding catalyst1 involved in 
the formation of native disulphide bridges of proteins 
in the endoplasmic reticulum2,3. It binds to numer-
ous ligands including proteins, peptides, and various 
other molecules. In particular, PDI has been shown 
to bind oestradiol and this leads to a decrease in its 
isomerase activity as followed by its activity on RNAse 
renaturation4.

Using di-eosin oxidized glutathione (DiE-GSSG) 
as substrate, it has been previously shown5 that all the 
potent oestrogenic molecules tested [oestradiol, E2; 17α-
ethynylestradiol (EE2) and diethylstilbestrol (DES)] also 
exhibited an inhibitory effect on PDI reductase activity. 
Likewise, the non-steroidal anti-inflammatory molecule 
indomethacin was also found to inhibit PDI reductase 
activity in the same assay.

Surprisingly, we found that two non-oestrogenic 
steroids, medroxyprogesterone acetate (MPA) and 
19-nortestosterone (19-NT), in contrast potentiated PDI 
reductase activity5. In order to get a better understanding 
of the ligands properties responsible for inhibition or aug-
mentation of PDI reductase activity, we performed a pre-
liminary screening with various other molecules in order 
to get a first guess on the molecular structural features 
of the ligands exhibiting either inhibitory or stimulatory 
effects, respectively. In addition to the previously identi-
fied 19-NT, three other molecules, bacitacin, fluoxetine 
(FLX) and ammonium sulphate, were found to potentiate 
PDI reductase activity using DiE-GSSG as substrate.

Materials and methods

Bacitracin (BAC), bisphenol A (BPA), 17α-EE2, FLX, 
dithioerythreitol (DTeT), eosin 5-isothiocyanate, GSSG, 
PDI (E.C. 5.3.4.1) from bovine liver (PDI), were all 
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purchased from Sigma–Aldrich (Isle-d’Abeau, France) 
and were of the highest available grades.

The PDI substrate, DiE-GSSG, was synthesized 
and purified as previously described6 with minor 
modifications5.

PDI reductase activity was measured through abolish-
ment of fluorescent self quenching when DiE-GSSG is 

reduced into two molecules of eosin-reduced glutathi-
one (E-GSH). Initial velocities in fluorescence increase 
(λexc = 518 nm; λem = 545 nm) were recorded using a 
Spectra-Max Gemini spectrofluorimeter (Molecular 
Devices, Sunnyvale, California) and analyzed with 
SoftMaxPro program (Molecular Devices, Sunnyvale, 
California). Concentrations of the reagents at t

0
 were 

abbreviations
19-NT, 19-nortestosterone; 
 BAC, bacitracin; 
 BPA, bisphenol A; 
 DES, diethylstilbestrol; 

 DiE-GSSG, di-eosin oxidized glutathione; 
 EE2, ethynylestradiol; 
 FLX, fluoxetine; 
 MPA, medroxyprogesterone acetate 
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Figure 1. Kinetics of di-eosin oxidized glutathione reduction into fluorescent E-GSH catalyzed by protein disulphide isomerase in the 
presence of various concentrations (0–10−4 M) of melatonin, auxin, serotonin or metoprolol.
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333 nM for PDI, 2.4 µM for DiE-GSSG, 33 µM for DteT, 
and 0.1 nM to 100 µM for the various molecules under 
study; except ammonium sulphate and sodium chloride 
(0.5 M).

Results

In the course of screening for molecules affecting PDI 
reductase activity using DiE-GSSG as substrate we found 
a number of molecules without any effect including 
metoprolol, serotonin, melatonin, and auxin (Figure 1).

Since potent oestrogenic molecules were found to 
inhibit PDI reductase activity, we looked for a possible 
effect of the weak oestrogen BPA. Figure 2 shows that BPA 
only exerted a slight inhibitory effect on PDI reductase 
activity in the 10−6–10−5 M range.

In order to get further information on PDI-inhibiting 
molecules, we included BAC that has been known for a 
long time as an inhibitor of PDI activity. In fact, Figure 
3 shows that BAC exerted a biphasic effect on PDI 
reductase activity. It potentiated PDI activity at around 
10−6 M final concentration and inhibited it at around 10−4 
M final concentration.

Interestingly, we observed two new molecules in 
addition to 19-NT and MPA5 exhibiting stimulatory 
effect on PDI reductase activity. Indeed Figure 4 shows 
that fluoxetin exerted such a potentiating effect but 
only in the millimolar range. Figure 5 shows that 0.5 M 
ammonium sulphate also potentiates PDI reductase 
activity whereas 0.5 M sodium chloride was without any 
effect (not shown). We also checked that the increase in 
fluorescence due to ammonium sulphate was indeed 

due to a higher production of E-GSH and not to higher 
fluorescence efficiency.

In order to get a better understanding of the 
 mechanisms of ligands inhibitory and stimulatory effects 
on PDI reductase activity, we analyzed PDI activity in 
the simultaneous presence of both potentiating and 
inhibitory ligands. Figure 6 shows the inhibition of PDI 
activity by increasing doses of DES in the presence of a 
potentiating dose of 19-NT whereas Figure 7 shows the 
inhibitory effect of EE2 in the presence of a potentiating 
 concentration of FLX.

Discussion

PDI is a multifunctional enzyme mainly found in the 
endoplasmic reticulum of eukaryotes7 where its main 
function is to catalyze the rearrangement (isomeriza-
tion) of disulphide bridges during folding of membrane 
and secreted proteins. This activity is of utmost impor-
tance as over one-third of all human proteins fold in the 
endoplasmic reticulum8. The concentration of PDI in the 
lumen of the endoplasmic reticulum is known to be very 
high9 and it has been reported to act as a high capacity 
reservoir for various ligands including hormones such as 
oestradiol (E2) and thyroxine (T34,10).

It has been previously shown that all the potent 
oestrogenic molecules tested (E2, EE2, DES) exhibited 
an inhibitory effect on PDI isomerase4,11 and reductase5 
activities. In the present work, we show that the weaker 
oestrogen BPA also exerts an inhibitory effect on PDI 
reductase activity. This result is consistent with pre-
vious observation that BPA inhibited the chaperone 
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Figure 2. Kinetics of di-eosin oxidized glutathione reduction into fluorescent E-GSH catalyzed by protein disulphide isomerase in the 
presence of various concentrations (0–10−4 M) of bisphenol A. BPA, bisphenol A; RFU, relative fluorescence unit.
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activity of PDI on RNAse renaturation12,13. We found 
BPA to inhibit only partially (15%) PDI reductase 
activity and it did so at much higher concentrations 
(10−5–10−4 M) than the more oestrogenic molecules 
(10−9–10−8 M). This difference between the inhibi-
tory doses of BPA and those of the potent oestrogenic 

molecules (E2, EE2, DES) on PDI reductase activity is 
roughly in the same order of magnitude as their relative 
oestrogenic activities14–21. It can be that, in some way, 
the binding sites for these different molecules in the 
oestrogen receptors (ER) and in PDI, respectively are 
similar enough to explain their similar relative bind-
ing affinities for EE2 and BPA, respectively (although 
this ratio is variable among species and between males 
and females). Another more exciting possibility relies 
on the observations that PDI is also present in loca-
tions other than the endoplasmic reticulum22 and can 
directly interact with the ERα and modify its functional 
properties23. A provoking but tenable hypothesis is that 
the binding of oestrogenic molecules to PDI would 
play a pivotal role in the stimulation of ER through this 
direct ERα-PDI interaction.

Since serotonin, melatonin, and auxin are derived 
from the indolic di-cyclic amino-acid tryptophan, we 
suspected that they could also exert some inhibitory 
effect on PDI activity. In fact, we found that they all had 
no effect on PDI activity at concentrations up to up to 10−4 
M (Figure 1). The β-1 adrenergic receptor antagonists, 
metoprolol (Figure 1) and atenolol (not shown) also did 
not exert any effect on PDI activity.

In a previous paper5, we reported that two non-oestro-
genic steroids, MPA, and 19-NT potentiated PDI reductase 
activity. Even with a somewhat limited screening, in the 
present study we were able to identify a few other mol-
ecules also potentiating PDI reductase activity using the 
recently developed assay with DiE-GSSG as substrate6.

Surprisingly, the well-known inhibitor of PDI activity 
BAC24,25 was found to exert potentiating activity and it did 
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Figure 4. Kinetics of di-eosin oxidized glutathione reduction into 
fluorescent E-GSH catalyzed by protein disulphide isomerase 
in the presence of various concentrations (0, 10−4, 10−3 M) of 
fluoxetine (FLX). The figure also shows the effect of 10% ethanol 
alone as also present with 10−3 M FLX.
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Figure 3. Effect of increasing concentrations of bacitracin (BAC) on protein disulphide isomerase (PDI) reductase activity. Left panel: 
kinetics of di-eosin oxidized glutathione reduction into fluorescent E-GSH catalyzed by PDI in the presence of various concentrations 
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so at lower concentrations (around 10−6 M) than those 
leading to the expected inhibition (around 10−4 M). BAC 
is a partly-cyclic polypeptide26 and to our knowledge, 

there is no clear structural explanation for its mechanism 
of inhibition of PDI activities. The present data showing 
a biphasic dose-response effect of BAC on PDI reductase 
activity might be helpful in future studies to better 
 understand the PDI mechanism of action.

The most efficient potentiating molecule we have 
identified so far is FLX which is known to act as a selec-
tive-serotonin-reuptake inhibitor and is the active com-
ponent in the antidepressant Prozac™27. FLX was found in 
our study to greatly increase PDI reductase activity but 
this effect was observed only at millimolar concentration 
which is largely higher than its active circulating concen-
trations28. The observed augmentation of PDI reductase 
activity by FLX is therefore not responsible for any of its 
favourable or unfavourable pharmacological effects29–33. 
Nevertheless, the molecular structure of FLX offers an 
interesting basis for the search of molecules with higher 
PDI potentiating activities, in order to better understand 
the molecular mechanism of this enzyme.

Ammonium sulphate (0.5 M) was also found to poten-
tiate PDI reductase activity in contrast to 0.5 M NaCl. It 
is likely that the mechanism involved is totally different 
from those implied for 19-NT, BAC, or FLX. The chao-
tropic/kosmotropic property of ammonium sulphate is 
well known and greatly influences protein stability and 
activity34,35, and their crystallization capacity36. It is there-
fore possible that ammonium sulphate can influence 
PDI catalytic efficiency by favouring its active confor-
mation as previously shown for glutamate decarboxy-
lase37 and consistent with the observation that PDI, like 
thioredoxins and transgtlutaminases, resist detergents 
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Figure 5. Kinetics of di-eosin oxidized glutathione reduction into 
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relative fluorescence unit.
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and chaotropic agents38. Another possibility is that 
ammonium sulphate act by altering water properties and 
therefore either water-protein interactions35 or the active 
concentration of substrate. This latter mechanism would 
thus be independent of PDI properties.

To our knowledge, this paper and the previous one 
from our laboratory5 are the first to describe ligands 
that potentiate PDI activity. Molecules with such a 
potentiating effect on PDI activity would be of utmost 
interest for the treatment of pathologies originating 
from intracellular protein aggregation. This concerns 
mainly neurodegenerative diseases such as Alzheimer 
disease39,40 but augmentation of PDI activity would also 
be expected to have favourable effects in situations 
where its inhibition by millimolar concentrations of 
BAC was found detrimental such as in angiogenesis41 
or stroke protection42.

The molecules we have shown so far to exert augmen-
tation of PDI reductase activity exhibit dissimilar struc-
tures and it is thus likely that they act through different 
mechanisms. It will be of interest to broaden the screen-
ing for PDI activity-potentiating molecules in order to 
identify highly potent and possibly synergistic drugs 
favouring correct folding and disulphide bridges forma-
tion in proteins.
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